

Hall Effect Current Sensor HSS200...1K5T01

 $I_{PN} = 200A...1500A$

Features

- . Low Amplitude Error & Phase Error.
- Isolated plastic case recognized according to UL 94-V0.

Advantage

- . Excellent accuracy
- Very good linearity
- . Low temperature drift
- . Optimized response time
- . Wide frequency bandwidth
- . No insertion losses
- . High immunity to external interference
- . Current overload capability.

Applications

- . AC variable speed drives and servo motor drives
- . Static converters for DC motor drives
- . Battery supplied applications . Uninterruptible Power
- Supplies (Ups) Switched Mode Power
- Supplies (SMPS)
- Power suppliers for welding applications.

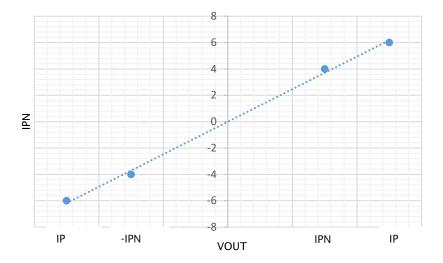
Application domain

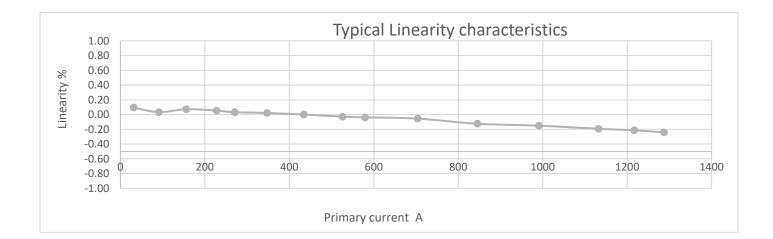
- Commercial
- . Industrial

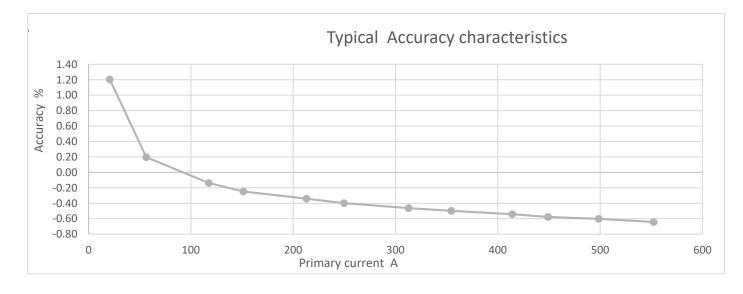
Maximum ratings

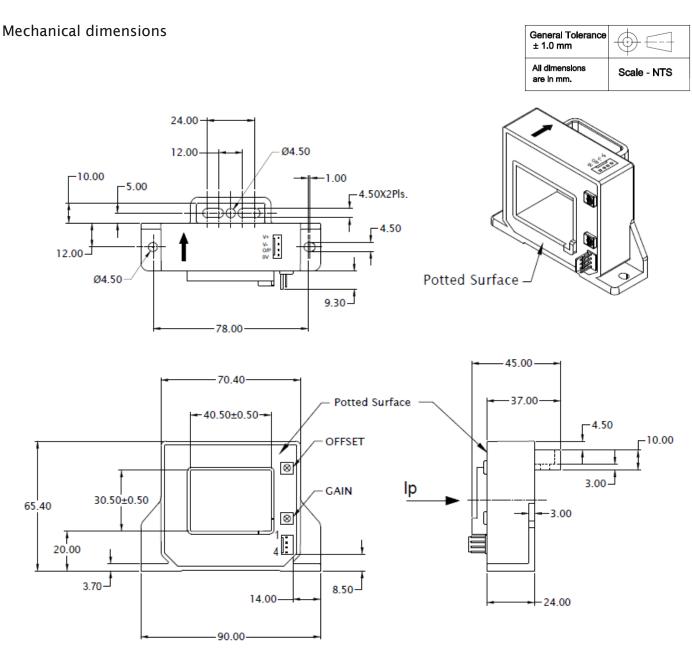
Parameter	Symbol	Value	Unit
Maximum supply voltage (working) -40 to 85°C	<u>+</u> Uc	±15V	V
Primary conductor temperature	Ts	85	°C
maximum steady state primary current) -40 to 85°C	PN	200 to 1500	A
Impulse withstand voltage 1.2/50µS	Vw	9.9	KV
RMS Voltage for AC Insulation Test,50hz,1 Min	U _d	4.9	KV
Comparative Tracking Index	CTI	275	V
Insulation Resistance @500 V DC	Rıs	>1000	MΩ

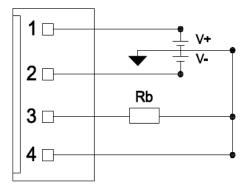
Product Range


Product Code	Primary Nominal Current	Primary Measuring Range		
HSS200T01	200A	±600A		
HSS400T01	400A	±1200A		
HSS500T01	500A	±1500A		
HSS600T01	600A	±1800A		
HSS800T01	800A	±2400A		
HSS1K0T01	1000A	±2500A		
HSS1K2T01	1200A	±2500A		
HSS1K5T01	1500A	±2500A		


Electrical data


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Burden Resistance	R₀			>10K		Ω
OutPut Voltage	V _{out}			±4		V
Supply Voltage (± 5%)	<u>+</u> Uc	Operating @12V reduces the measuring Range		±15		V
Current Consumption at IPN	lout			±15		mA
Output Internal Resistance	Rout			100		Ω
Overall Accuracy) At I _{PN} (Excluding offset)	X _G	s@25°C		≤±1		%
Linearity Error (Excluding offset)	Σ	-40 to 85 °C		<1		%
Output offset Voltage	V _{off}			≤ ± 20		mV
Hysteresis offset Voltage	V _{он}	<pre>@I_P = 0 after a primary current of I_{PN}</pre>		≤ ± 10		mV
Temperature coefficient of V _{out}	TV _{OE}	-40 to +85 °C		≤ ± 0.1		%/K
Reaction Time @ 90% Of I _{PN}	t _{ra}			<5		μs
Frequency Bandwidth	BW	-3dB, small signal bw	0		25	KHz
di/dt accurately followed	di/dt			>50		A/ µs
Creepage distance				11		mm
Clearance distance				11		mm
Ambient Operating Temperature	TA		-40		+105	°C
Ambient Storage Temperature	Ts		-50		+105	°C
Mass	m			300		g
Standards EN 50178 UL 508						


Input & Output Characteristics



Connection Diagram

- Connector on the product: Connector header, Part no-22-04-1041, Molex
- Suggested mating connector: Connector housing, Part no-22-01-1042, Molex
- Sensor mounting: 2 holes X Ø 4.5mm, M4 steel screws, recommended fastening torque 3 N-m.
- It is recommended to centrally locate the current carrying conductor or completely fill the central opening for optimum performance.
- Output is positive when current (Ip) flows in the direction of arrow.
- Ensure proper connection of Power supply to avoid damage to the Sensor.

Safety

• This Sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

• Caution, risk of electrical shock

When operating the Sensor, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

- A protective housing or additional shield could be used.
- Disconnecting the main power must be possible
- Over currents ($*I_{PN}$) can cause an additional voltage offset due to magnetic remanence.
- The temperature of the primary conductor shall not exceed 100 °C.
- This Sensors may only be used in electrical or electronic systems which fulfil the relevant regulations (Standards, EMC Requirements)

• Pay attention to protect non-isolated high-voltage current carrying parts against direct contact (e.g. with a protective housing)

• When installing the sensor, ensure that the safe separation (between primary circuit and secondary circuit) is maintained over the

whole circuits and their connections.